

Universidade de Lisboa Instituto Superior de Agronomia

QUÍMICA

2º Capítulo – Quantidade química e relações mássicas em reações químicas

PAULA ALVARENGA

MASSA ATÓMICA RELATIVA (A_r)

A massa de um átomo é expressa empregando-se uma unidade extremamente pequena, massa atómica relativa (A_r).

A unidade de massa atómica foi definida em relação ao átomo de carbono com número de massa igual a 12 (12C). Por definição, o átomo de carbono têm exactamente 12 unidades de massa, ou seja:

1 unidade de massa atómica = 1/12 da massa do átomo de ¹²C

Expressas em unidades de massa atómica, as massas dos átomos são chamados de massas

atómicas relativas (A_r).

$$A_{\text{PATULA ALVAR enga, ISA 2017}},5$$

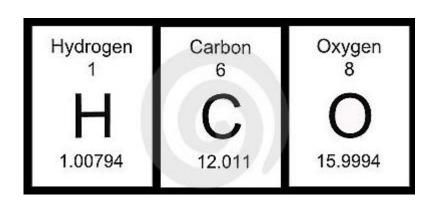
$$C_{\text{35,5}} \longrightarrow \text{massa atômica (A)}$$

número atômico (Z)

MASSA MOLECULAR (M_r)

A massa de uma molécula é também expressa em unidades de massa atómica, sendo chamada de massa molecular relativa (M_r).

Como a molécula é um conjunto de átomos, a sua massa é a soma das massas de todos os átomos que compõem a molécula: massa molecular relativa (M_r).


Exemplo:

Cálculo da massa molecular do etileno (C₂H₄):

$$A_r(C) = 12,0$$

 $A_r(H) = 1,0$

Então:

$$M_r^{ACC} C_2^{ACC} H_4^{ACC} = 2^A \times A_r(C) + 4 \times A_r(H) = 2 \times 12.0 + 4 \times 1.0 = 28.0$$

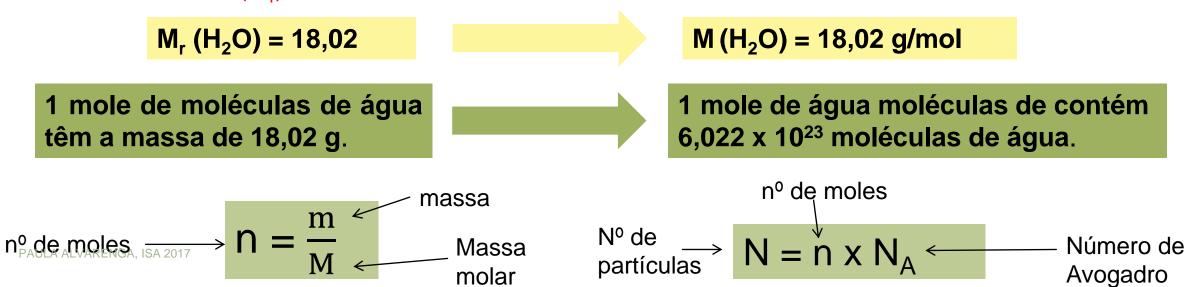
A MOLE: unidade de quantidade de substância

Apesar de por vezes ser útil considerar o comportamento de um único átomo ou molécula, ou de um pequeno conjunto de átomos ou moléculas, no dia-a-dia temos necessidade de trabalhar com quantidades muito maiores de substância. Surge a necessidade de definir uma unidade de quantidade de substância - a mole.

Assim como os ovos são contados "às dúzias", as partículas (átomos, moléculas, iões,...) são contados "às moles".

A mole foi definida como sendo a quantidade de matéria contendo o mesmo número de partículas que o número de átomos existentes em exactamente 12 g de carbono 12 (12C).

A este número chamamos *Número de Avogadro* e é igual a **6,022 x 10**²³ partículas (átomos, moléculas, iões,...).


Número de Avogadro

 $N_A = 6,022 \times 10^{23} \text{ partículas/mol}$

MASSA MOLAR: é a massa da mole.

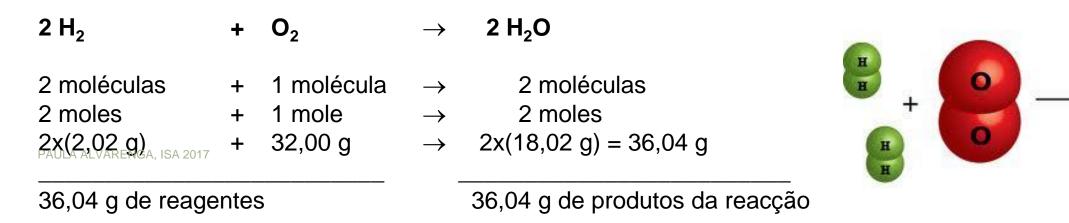
Massa Molar (M): é a massa da mole. É a massa, em gramas, que corresponde a uma mole de partículas (átomos, moléculas, iões, etc.).

Sabendo a massa molecular relativa de um composto (M_r) podemos calcular a massa molar da molécula ou composto. A massa molar (M) (em gramas) é numericamente igual à sua massa molecular relativa (M_r).

EQUAÇÕES QUÍMICAS: escrita de reacções químicas

Uma **EQUAÇÃO QUÍMICA** é uma tentativa de descrever o que se passa durante uma reacção química.

Por exemplo, consideremos o que acontece quando o hidrogénio gasoso (H₂) arde ao ar, que contém oxigénio (O₂), para formar água (H₂O). Esta reacção pode ser descrita através da seguinte equação química:


$$H_2 + O_2 \rightarrow H_2O$$

o símbolo " + " significa " reage com ", o símbolo "→ " significa " para dar ". Assim, podemos ler a equação química da seguinte maneira: " o hidrogénio molecular reage com o oxigénio molecular para dar água ".

LEI DA CONSERVAÇÃO DA MASSA

No entanto, uma equação química para estar certa, isto é, para estar de acordo com a **LEI DA CONSERVAÇÃO DA MASSA**, terá de apresentar o mesmo número de cada tipo de átomos de um lado e de outro da equação. Podemos acertar esta equação pondo um coeficiente adequado (2 neste caso), antes de H₂ e H₂O:

A estes coeficientes, colocados antes de determinadas fórmulas na equação química para a acertar, chamamos COEFICIENTES ESTEQUIOMÉTRICOS.

EQUAÇÕES QUÍMICAS: escrita de reacções químicas

Para fornecer informação adicional, indica-se por vezes os **estados físicos** dos reagentes e dos produtos usando as letras **(g)**, **(I)** e **(s)** para indicar se a substância é <u>gasosa</u>, <u>líquida</u> e <u>sólida</u> respectivamente. Para descrever a dissolução de sais em água escreve-se por vezes **(aq)**, que designa o <u>meio aquoso</u>.

Por vezes a reacção não se dá só num sentido (*reacção irreversível*), mas nos dois sentidos (*reacção reversível*). Nesse caso estabelece-se o chamado **equilíbrio químico**, que é representado por uma seta dupla, (\(\sigma\)), a separar reagentes de produtos da reacção:

$$H_2(g) + I_2(g) \leftrightarrows 2 HI(g)$$

ACERTO DE REAÇÕES QUÍMICAS: seguir os seguintes passos

- (a) Escrever as fórmulas correctas no lado esquerdo e direito da equação.
- (b) Começar o acerto da equação experimentando coeficientes adequados que nos dêem o mesmo nº de átomos de cada elemento em ambos os lados da equação.
- Podemos mudar os coeficientes (os nºs que precedem as fórmulas), mas não os índices (os nºs no seio das fórmulas).
- (c) Elementos que aparecem apenas uma vez em cada lado da equação e com um nº igual de átomos em cada lado: as suas fórmulas devem ter o mesmo coeficiente. Em seguida, olhar para os elementos que aparecem apenas uma vez em cada um dos lados da equação, mas com um nº de átomos diferente: acertar estes elementos.
- (d) Verificar a equação acertada para se certificar que o nº total de cada tipo de átomos em ambos os lados da seta é o mesmo.

ACERTO DE EQUAÇÕES QUÍMICAS

O primeiro passo na preparação industrial de ácido nítrico, HNO₃, envolve a reacção entre o amoníaco e o oxigénio gasoso para formar óxido nítrico, NO e água:

2x 2 NH₃ (g) +
$$5/2$$
 O₂ (g) \rightarrow 2 NO (g) + 3 H₂O (g) 4 NH₃ (g) + 5 O₂ (g) \rightarrow 4 NO (g) + 6 H₂O (g)

Outros exemplos:

2 CO (g) + O₂ (g)
$$\rightarrow$$
 2 CO₂ (g)
C₃H₈ (g) + 5 O₂ (g) \rightarrow 3 CO₂ (g) + 4 H₂O (g)
2 Li (s) + 2 H₂O (l) \rightarrow 2 LiOH (aq) + H₂ (g)

PAULA ALVARENGA, ISA 2017

CÁLCULOS ESTEQUIOMÉTRICOS

As relações mássicas entre reagentes e produtos numa reacção química representam a **estequiometria** de uma reacção.

A pergunta básica que se coloca em muitos cálculos estequiométricos é: "se conhecermos as quantidades dos materiais de partida numa reacção, os reagentes, quanto produto se formará?".

Ou a pergunta inversa: "Quanto reagente terá que ser usado para obter uma dada quantidade de produto ?".

A maneira de determinar a quantidade de reagente consumida, ou a quantidade de produto formada, numa reacção é denominada o MÉTODO DA MOLE.

Este baseia-se no facto de que os coeficientes estequiométricos numa reacção química podem ser interpretados como o nº de moles de cada substância envolvida nessa reacção química.

CÁLCULOS ESTEQUIOMÉTRICOS

Exemplo:

$$2 \text{ CO (g)} + O_2 (g) \rightarrow 2 \text{ CO}_2 (g)$$

A equação e os coeficientes estequiométricos podem ser interpretados dizendo que: "duas moles de monóxido de carbono reagem com uma mole de oxigénio gasoso para formar duas moles de dióxido de carbono.

	Moles de reagente			Moles de produto		
	Massa de reagente		Moles de Reagente		Moles de produto	
PAULA ALVARENGA, ISA 2017	Massa de reagente		oles de eagente	Moles produ		Massa de produto

ACERTE AS SEGUINTES EQUAÇÕES QUÍMICAS:

PAULA ALVARENGA, ISA 2017

REAGENTES COM IMPUREZAS:

Quando temos um reagente com impurezas, temos sempre que calcular a massa de reagente pura antes de fazer os cálculos estequiométricos:

Exemplo: A combustão do ferro com o oxigénio do ar tem como produto o óxido de ferro Fe₃O₄. Foram queimados 0,2 kg de ferro com 20% de impurezas. Calcule a massa de Fe₃O₄ que obtido nessa reação.

Dados: $A_r(O) = 16 g$; $A_r(F) = 55.8$

- 1º Escrever e acertar equação química
- 2º Calcular massa de Fe pura
- 3º Converter massa de Fe em moles de Fe
- 4º Fazer o calculo estequiométrico: n(Fe)→ n(Fe₃O₄)
- 5º Converter moles de Fe₃O₄ em massa de Fe₃O₄

PAULA ALVARENGA, ISA 2017 14

REAGENTES LIMITANTES

Quando um químico leva a cabo uma reacção, os reagentes não estão normalmente presentes em <u>quantidades estequiométricas exactas</u>, ou seja, na proporção indicada pela equação acertada.

O reagente consumido em primeiro lugar numa reacção é denominado REAGENTE LIMITANTE, visto que a quantidade máxima de produto formado depende da quantidade inicial

Quando todo o reagente limitante tiver sido consumido, já não se pode formar mais produto.

Outros reagentes presentes em quantidades superiores às necessárias para reagir com o reagente limitante presente são denominadas **REAGENTES EM EXCESSO**.

Nos cálculos estequiométricos envolvendo reagentes limitantes, o primeiro passo consiste em decidir qual dos reagentes é o limitante. Depois do reagente limitante ter sido identificado os cálculos estequiométricos podem prosseguir como foi referido anteriormente.

RENDIMENTO DAS REACÇÕES

A quantidade de reagente limitante presente no início de uma reacção está relacionada com a quantidade de produto que se obtém a partir da reacção.

Se todo o reagente limitante se converter em produto, teremos o rendimento máximo (100%).

Na prática, o rendimento máximo é difícil de obter, porque:

- Muitas reacções são reversíveis, não se processando a 100% da esquerda para a direita.
- Mesmo quando todos os reagentes são convertidos em produtos, pode ser <u>difícil recuperar os</u> <u>produtos do meio reaccional</u>.
- Algumas reacções são complexas e os <u>produtos continuam a reagir entre si ou com os</u> reagentes para formar ainda outros produtos.

PAULA ALVARENGA, ISA 2017

RENDIMENTO DAS REACÇÕES (η)

Todos estes factores vão reduzir o rendimento da equação inicial.

Assim, fala-se em rendimento da reacção (η) (letra Grega que se lê ETA), em percentagem, que descreve a proporção da conversão em relação à conversão máxima. Pode ser calculado da seguinte forma:

$$\eta = \frac{\text{massa de produto realmente formada}}{\text{massa de produto teórica}} \times 100$$

$$\eta = \frac{n^{\varrho} \text{ moles de produto realmente formadas}}{n^{\varrho} \text{ moles de produto teóricas}} \times 100$$

PAULA ALVARENGA, ISA 2017

Massa (ou moles) de produto calculadas a partir dos cálculos estequiométricos, considerando que todo o reagente limitante se converte em produto da reacção

EXEMPLO

Considere a seguinte reação, em fase gasosa, entre o monóxido de azoto e o cloro para formar cloreto de nitrosilo:

$$NO(g) + Cl_2(g) \rightarrow NOCl(g)$$

Numa determinada experiência fizeram-se reagir 600 g de gás monóxido de azoto com 1000 g de cloro gasoso. Identifique qual é o reagente em excesso e qual é o reagente limitante, justificando com os cálculos necessários.

Dados: $A_r(N) = 14,00$; $A_r(O) = 16,00$; $A_r(CI) = 35,45$.

1º passo: Acertar a equação química: 2 NO (g) + Cl_2 (g) \rightarrow 2 NOCI (g)

2º passo: Calcular as massas molares e o número de moles de cada um dos reagentes

NOTA: Nunca esquecer de verificar se a equação fornecida está acertada.

$$n^{\circ} \text{ mol(NO)} = \frac{m}{M} = \frac{600}{30} = 20 \text{ mol}$$

$$n^{\circ} \operatorname{mol}(Cl_2) = \frac{m}{M} = \frac{1000}{70.9} = 14,1 \text{ mol}$$

EXEMPLO (CONT.)

3º passo: Dividir o número de moles de cada substância pelo seu coeficiente estequiométrica da quação acertada:

4º O que tiver o quociente mais alto indica o reagente em excesso, o que tiver o quociente mais baixo indica o reagente limitante:

$$10 \text{ mol (NO)} < 14,1 \text{ (Cl}_2)$$

$$\downarrow \qquad \qquad \downarrow$$
Reagente limitante Reagente em excesso

NOTA: Esta é uma das formas de resolver este exercício, mas não a única. Quem sabe outra?

EXEMPLO (CONT.)

Qual a massa de cloreto de nitrosilo, NOCI, em gramas, que é possível obter a partir das quantidades de reagentes referidas anteriormente?

Reagente limitante: NO (600 g ou 20 mol, já calculadas na alínea anterior)

Pela estequiometria da reacção: 2 mol (NO) ----- 2 mol (NOCI)

20 mol ----- x x = 20 mol (NOCI)

M(NO) = 65,45 g/mol

Então: $m(NOCI) = n^0 \text{ mol} \times M(NOCI) = 20 \times 65,45 = 1309 g$

PAULA ALVARENGA, ISA 2017 20

EXEMPLO (CONT.)

Se o rendimento da reação enunciada for de 85%, qual a massa de cloreto de nitrosilo, NOCI, em gramas, que obteria a partir das quantidades de reagentes enunciadas anteriormente?

O rendimento (η) pode ser calculado através da seguinte expressão:

$$\eta = \frac{\text{massa real de produto formada}}{\text{massa teórica que se formaria se todo o reagente se convertesse em produto}} \times 100$$

Por isso:

$$\eta = 85\%$$

massa teórica NOCI = 1309 g (ver alínea anterior)